
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020 497

Sampling-Tree Model: Efficient Implementation of
Distributed Bayesian Inference in Neural Networks

Zhaofei Yu , Member, IEEE, Feng Chen , Member, IEEE, and Jian K. Liu

Abstract—Experimental observations from neuroscience have
suggested that the cognitive process of human brain is realized as
probabilistic reasoning and further modeled as Bayesian infer-
ence. However, it remains unclear how Bayesian inference could
be implemented by network of neurons in the brain. Here a novel
implementation of neural circuit, named the sampling-tree model,
is proposed to fulfill this aim. By using a deep tree structure
to implement sampling with simple and stackable basic neural
network motifs for any given Bayesian networks, one can perform
local inference while guaranteeing the accuracy of global infer-
ence. We show that these task-independent motifs can be used in
parallel for fast inference without intensive iteration and scale-
limitation. As a result, this model utilizes the structure benefit
of neuronal system, i.e., neuronal abundance and multihierarchy,
to perform fast inference in an extendable way.

Index Terms—Bayesian inference, importance sampling, neural
network, probabilistic population coding (PPC), sampling-tree
model (STM).

I. INTRODUCTION

UNDERSTANDING how the brain works is one of the
most challenging problems in the 21st century. Our brain

can represent probability distribution [1]–[3]. The cognitive
and perceptive process of the brain is a process of proba-
bilistic reasoning, which has been indicated by a number of

Manuscript received April 2, 2019; revised June 12, 2019; accepted
July 7, 2019. Date of publication July 10, 2019; date of current ver-
sion September 9, 2020. This work was supported in part by the National
Natural Science Foundation of China under Grant 61806011, Grant 61671266,
and Grant 61836004; in part by the National Post-Doctoral Program for
Innovative Talents under Grant BX20180005; in part by the China Post-
Doctoral Science Foundation under Grant 2018M630036; in part by the
International Talent Exchange Program of Beijing Municipal Commission of
Science and Technology under Grant Z181100001018026; in part by the Royal
Society Newton Advanced Fellowship under Grant NAF/R1/191082; and in
part by the Tsinghua University Initiative Scientific Research Program under
Grant 20161080084. (Corresponding authors: Feng Chen; Jian K. Liu.)

Z. Yu is with the National Engineering Laboratory for Video Technology,
Department of Computer Science and Technology, Peking University, Beijing
100871, China, also with the Department of Automation, Center for Brain-
Inspired Computing Research, Tsinghua University, Beijing 100084, China,
and also with Peng Cheng Laboratory, Shenzhen 518055, China (e-mail:
yuzf12@pku.edu.cn).

F. Chen is with the Department of Automation, Center for Brain-Inspired
Computing Research, Tsinghua University, Beijing 100084, China, also with
the Beijing Innovation Center for Future Chip, Beijing 100084, China, and
also with the Beijing Key Laboratory of Security in Big Data Processing and
Application, Beijing 100084, China (e-mail: chenfeng@tsinghua.edu.cn).

J. K. Liu is with the Centre for Systems Neuroscience, Department of
Neuroscience, Psychology and Behaviour, University of Leicester, Leicester
LE1 7HA, U.K., and also with Peng Cheng Laboratory, Shenzhen 518055,
China (e-mail: jian.liu@leicester.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCDS.2019.2927808

psychological and neuroscience experiments [4], [5]. From
the macroscopic level, Bayesian models have shown their
ability of explaining how the brain perceives the world and
have been successfully used in various fields of brain science,
such as perception [6]–[9], cognition [10]–[12], sensorimo-
tor control [5], [13], [14], and decision making [15]–[18].
Nevertheless, from the microscopic perspective, it remains
largely unknown how Bayesian inference is implemented
by our neuronal systems, or more precisely, how can a
network of spiking neurons implement inference algorithms
of Bayesian models. Therefore, it is challenging, yet of great
importance, to build the bridge between Bayesian inference
models and possible implementations in a neural network.
For one thing, it would help us understand the process of
human cognition theoretically [3]. For another, recent advance-
ments of neuromorphic chips can improve the computation
power by utilizing neural circuits implementation of Bayesian
inference [19]–[23].

According to recent studies, many types of neural networks
(circuits) with different architectures have been proposed to
perform inference of probabilistic graphical models, especially
a Bayesian network. These neural networks differ in the way
of expressing probability, which can be classified as the prob-
ability code, the log probability code, the population code,
and the sampling-based code [24], [25]. Anastasio et al. [26]
used the explicit probability code to express probabilities by
assuming that the probabilities are proportional to the neuronal
response in superior colliculus. In this way, the summation
of probabilities can be calculated by summing the overall
responses of neurons. The same way of coding was also used
in [27]. In order to simplify the multiplication of probabili-
ties, Rao [28], [29] proposed to use the log probability code
and proved that the differential equations of recurrent neural
networks are in coincidence with the inference equations of the
hidden Markov model, in which the computation of sum-logs
was used to approximate the computation of log-sum. Beck
and Pouget [30] focused on this approximation problem and
set up a precise equivalence relation from the first principle.
Angela and Dayan [31] employed the same way of coding
and built a hierarchy neural network to perform inference of
posterior probabilities.

Another important way of coding is probabilistic pop-
ulation coding (PPC) [32], [33], which uses a population
of neurons to encode a distribution, instead of probabil-
ity values. Ma et al. [32] showed that cue integration can
be implemented by linear combination of each population
activity with PPC. The method was exploited thereafter by

2379-8920 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6913-7553
https://orcid.org/0000-0003-4813-2494
https://orcid.org/0000-0002-5391-7213

498 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

Beck et al. [34] to realize Bayesian decision-making [15] and
inference of marginalization. In addition, Ma and Rahmati [35]
implemented causal inference with PPC. The above mentioned
probabilistic codes can be summarized as the assumption that
the physiological signals of neurons as a whole follow cer-
tain probability distribution. And yet there is another coding
method, termed sampling-based coding, which treats neuronal
spikes as samples from a particular probability distribution.
Buesing et al. [36] and Pecevski et al. [37] proposed a method
to perform inference of marginal probability based on Markov
chain Monte Carlo (MCMC) as long as the network meets the
neural computability condition (NCC). Shi and Griffiths [38]
designed a neural network to implement hierarchical Bayesian
inference by importance sampling, but it is limited to simple
Bayesian models such as the chain model.

Most of the approaches described above consider how pos-
terior probabilities are represented and optimized. There is a
final body of work that deal directly with hierarchical Bayesian
inference in the brain from a cognitive neurosciences view-
point, which is called hierarchical predictive coding. This is
a Bayesian filtering scheme that can be formally related to
hierarchical extended Kalman filtering (and related to sam-
pling approaches such as particle filtering). There is a large
amount of anatomical and physiological evidence suggest-
ing that the visual process uses some form of hierarchical
predictive coding [39].

In summary, all these works focus on how a single neuron or
a group of neurons implement probabilistic inference of prob-
abilistic graphical models with a small number of nodes and
edges. Just as concluded in [1], “Most studies in neuroscience
have focused on problems with a small number of variables,
all following simple distributions, for which an optimal solu-
tion can be easily derived. . . Real-life problems, however, are
almost always far too complicated to allow for optimal behav-
ior.” Besides, as most of the previous studies take advantage
of task-specific neural circuit, they are hard to be generalized
to solve other inference problems [35]. It is worth considering
how to build general-purpose neural networks for large-scale
Bayesian models, and that is the goal of this paper. In order to
achieve this, the neural network should resemble to the orga-
nization structure of the brain. Therefore, we propose four
brain-inspired principles for designing of neural networks to
implement Bayesian inference.

1) Scalability: The large number of neurons should be
taken into account given that there are about 80 bil-
lion neurons in human brain, which brings powerful
representation ability.

2) Hierarchy: The neural network has a hierarchical struc-
ture similar to human brain and it could extract
information layer by layer.

3) Locality: A single neuron or a group of neurons should
work in a simple style while complex functions could
be achieved when they are connected together.

4) Parallelizability: The distributed neurons are organized
to perform parallel computing simultaneously so that the
inference is rapid enough for different tasks.

Based on aforementioned principles and our previous work
of a sampling-based distributed inference algorithm [40], we

propose a sampling-tree model (STM) as a neural network
model for Bayesian inference. We characterize this model as
STM because it is a probabilistic graphical model with hier-
archical tree structure on the whole and enormous neurons
representing samples at each node. In this model, the root
node represents the problem we would like to infer, such as
the inference of a stimulus, or the recognition of an object.
The leaf nodes are the evidence we receive from the outside
world. The branch nodes represent the intermediate variables.

In short, the main idea of the STM is to perform neural sam-
pling on a deep tree-structured neural circuit. By taking full
advantage of the tree structure, the global inference problem
can be converted to the local inference problem. In conse-
quence, we are able to design simple and repeatable basic
neural network motifs to perform local reasoning while guar-
anteeing the accuracy of global reasoning. On the local level,
importance sampling is introduced to conduct inference, which
utilizes a massive number of neurons to sample in parallel
so that the posterior probabilities can be calculated without
iteration. This means that the STM takes the strategy of trad-
ing space for time and the inference process could be quite
rapid. We also prove that the proposed model is able to approx-
imate Bayesian inference with high accuracy. Experimental
simulations, including integration of multicue information and
object detection with compositional model, demonstrate that
the STM is a general-purpose neural network, which can be
used for distributed large-scale Bayesian inference.

To summarize, our contributions include the following
aspects.

1) We propose a neural circuits model that can implement
sample-based inference algorithm, and further imple-
ment fast and accurate inference of arbitrary Bayesian
networks.

2) We prove that the particular independence assumptions
of the inference algorithm can be effectively ignored.

3) We show that our proposed neural circuit can be used
to solve practical cognitive problems, like integration of
multicue information and object detection.

4) We give a functional explanation for neuronal abundance
and multihierarchy of the brain from a computational
perspective.

The rest of this paper is organized as follows. We first dis-
cuss the definition of the STM and show how to represent
Bayesian models with the STM in Section II. Then, we show
how to perform Bayesian inference with importance sampling
from the algorithm level in Section III. Section IV gives some
theoretical analysis of the proposed sampling-based inference
algorithm. The detailed implementations of Bayesian inference
with the STM from the neural circuits level are proposed in
Section V. We show the experimental results in Section VI
and conclude in Section VII. Part of this work was published
as a short conference communication [40].

II. DEFINITION OF SAMPLING-TREE MODEL

In order to build a general-purpose neural network for large-
scale Bayesian models, we propose the STM as shown in
Fig. 1(a). From the macroscopic viewpoint, this model could

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

YU et al.: STM: EFFICIENT IMPLEMENTATION OF DISTRIBUTED BAYESIAN INFERENCE IN NEURAL NETWORKS 499

(a) (b) (c)

Fig. 1. STM. (a) Example of STM in neural network, where different evidence feeds into the different groups of neurons in a distributed way. Local
computations are done by each group. (b) Nontree structured Bayesian model. (c) Tree-structured Bayesian model corresponding to the STM in (a). A nontree
structured Bayesian model can be converted to a tree-structured Bayesian model by combining some variables, C1 and C2 here, together into one variable C1,2.

be treated as a probabilistic graphical model with a hierarchi-
cal tree structure. From the neural level, each node includes
a single neuron or a group of neurons representing sam-
ples and a number of connections between these neurons. In
the STM, the root node represents the problem we want to
infer, such as inference of outside stimuli or recognition of
an object. The leaf nodes are the evidence we receive from
the outside world. The branch nodes represent intermediate
variables. Each neuron is viewed as a sample from a spe-
cial distribution.1 The connections between neurons are the
basis of information transmission or probability calculation,
which will be explained in the next sections. In summary, the
STM we proposed has a hierarchical structure and includes
large numbers of neurons, which is in accordance to the first
two principles of brain-inspired neural network architecture,
scalability and hierarchy.

The STM is able to represent tree-structured Bayesian infer-
ence because it is a hierarchical tree-structured model on
the whole. The difficulty is how to represent nontree struc-
tured Bayesian models. Here we use the conclusion that by
combining some variables together, one can convert a non-
tree structured Bayesian model into a tree-structured Bayesian
model at the cost of greater state space [41, Ch. 10]. This
means that in order to express all the states of a new vari-
able, more neurons are needed than before. As long as there
are enough neurons, the STM could represent any kind of
Bayesian model.

Fig. 1(b) and (c) illustrates how to convert nontree struc-
tured Bayesian models into a tree-structured Bayesian model.
Here the nontree structured model can be converted to a tree-
structured Bayesian model by combing variables C1 and C2
to get a new variable C1,2 [shown in Fig. 1(c)], and this new
model is the same as the tree-structured model of the STM in
Fig. 1(a), where a population of neurons are used to express
a node. Consequently, the STM in Fig. 1(a) represents the
nontree structured Bayesian models in Fig. 1(b). Supposing

1As different neurons have different tuning curves, they can represent
different states of a variable.

that the number of the states of variables C1 and C2 are both
10, the number of the states of variable C1,2 will be 100. If
each neuron represents a special state, then more neurons are
needed to represent the combined variable C1,2 than to repre-
sent variables C1 and C2. In fact, the Bayesian models used
for real-life problems may include many nontree structures. As
a result, the STM needs numerous neurons when representing
these Bayesian models.

III. BAYESIAN INFERENCE WITH IMPORTANCE SAMPLING

In this section, we propose a sampling-based algorithm
to perform Bayesian inference. We will explain the neural
network architectures of STM that implement this algorithm
in Section V. The Bayesian models discussed here are tree-
structured Bayesian models. There are two reasons to study
this kind of model. First, it is easy to perform inference of
tree-structured Bayesian models [41]. Variational-based and
sampling-based inference methods, like belief propagation
(BP) [41], [42] and MCMC [43], [44], are able to per-
form accurate or nearly accurate inference with the benefit of
tree structure. Second, the tree-structured models are capable
of standing for many nontree structured models as an arbi-
trary Bayesian model could be converted to a tree-structured
Bayesian model by combining some variables together [41].

Bayesian models for real-world problems are complex and
the scale size can be very large. Although BP and MCMC
can get accurate inference results in some Bayesian models,
the existing neural networks implementing inference of these
models with BP [45]–[47] or MCMC [36], [37] are very com-
plicated. Each neuron or a group of neurons in these neural
networks are commonly required to realize different and com-
plex calculations, which violates the basic principle of neural
system that a single neuron or a group of neurons should
work in a simple style, whereas complex functions could be
achieved when they are connected together. In addition, it takes
considerable time for neural networks to converge to the infer-
ence result as they need multiple iterations. It is imperative

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

500 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

(a) (b) (c) (d)

Fig. 2. Decomposition of tree-structured Bayesian network. (a) Example of tree-structured Bayesian network. (b) This Bayesian network is composed of
basic network motifs. (c) Basic network motif in each box of (b) is a simple two-layer Bayesian network that consists of a parent node and several children
nodes. (d) Special case of the basic network in (c).

to propose a new and fast inference algorithm and the cor-
responding neural circuits should and could be implemented
by simple and basic networks. Thanks to the tree structure of
Bayesian networks, global inference can be converted to local
inference with network decomposition. The local inference
problem is then performed by importance sampling, which
takes advantage of massive numbers of neurons to sample in
parallel. This means the STM can trade space for time so that
inference would be quite rapid. Besides, this scheme of local
inference guarantees that basic neural network of the STM is
simple, which makes STM plausible for large-scale distributed
computations.

A. Decomposition of Global Inference to Local Inference

The inference problem considered in this paper includes
marginal inference and maximum a posterior (MAP) esti-
mation. By marginal inference, we refers to computing the
posterior of the root node being in each state given the state
of the leaf nodes. Conversely, MAP estimation refers to find-
ing the most probable state of the root node given the state of
leaf nodes.

Specifically, we consider the tree-structured Bayesian
network shown in Fig. 2(a), where A represents the
root node, and I1–I3 denote the leaf nodes. The joint
distribution defined on this Bayesian network has the
form P(A, B1, B2, C1, C2, C3, I1, I2) = P(A) P(B1|A)P(B2|A)

P(C1|B1)P(C2|B1)P(C3|B2)P(I1|C1) P(I2|C2)P(I3|C3). If we
have known the prior probability P(A) and all the conditional
probabilities defined on the right side of the equality defined
above, the inference problem has the following two steps.

1) Marginal Inference: P(A|I1, I2, I3).
2) MAP Estimation: arg maxA P(A|I1, I2, I3).
As we can see, when performing marginal inference or MAP

estimation of a tree-structured Bayesian network, the belief

propagates from bottom to up. A direct idea is to decom-
pose the network into simple and similar networks, then design
an inference algorithm for each basic network. Each network
could receive belief from all the children networks and at the
same time pass its belief to the parent network. The similar
structure in all the basic networks and the same inference algo-
rithm guarantee that the whole neural network is composed
of basic and repeatable neural network motifs. By analyzing
the model in Fig. 2(a), we find that there is only one basic
network, which consists of several children nodes and a par-
ent node [shown in Fig. 2(b)–(d)]. If we can propose a rapid
inference algorithm for the basic network and design a neural
network to implement the algorithm, then the basic networks
motifs can be combined to implement inference of the whole
Bayesian network.

B. Inference of Tree-Structured Bayesian Models With
Importance Sampling

In this paper, we conduct inference for the basic network
motif with importance sampling, which is a method to estimate
the value of some function by sampling from a simple distri-
bution rather than the distribution of the interest [48], [49].
Actually importance sampling has been used to estimate
the conditional expectation of some functions f (x) given the
variable y [38]

E(f (x)|y) =
∑

x

f (x)P(x|y) =
∑

x f (x)P(y|x)P(x)∑
x P(y|x)P(x)

= E(f (x)P(y|x))P(x)

E(P(y|x))P(x)
≈
∑

xi

f
(
xi) P

(
y|xi
)

∑
xi P
(
y|xi
)

xi ∼ P(x) (1)

where xi ∼ P(x) denotes that xi follows the distribution P(x).
Note that (1) converts the conditional expectation E(f (x)|y) to

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

YU et al.: STM: EFFICIENT IMPLEMENTATION OF DISTRIBUTED BAYESIAN INFERENCE IN NEURAL NETWORKS 501

the weighted combination of normalized conditional probabil-
ities [(P(y|xi))/(

∑
xi P(y|xi))].

We generalize (1) to conduct inference of the basic
Bayesian network in Fig. 2(c), where the problem
is to compute

∑
B1,B2,...,Bn

P(A|B1, B2, . . . , Bn) ·
P(B1|I1)P(B2|I2) . . . P(Bn|In), and I1, I2, . . . , In represent
evidence variables of B1, B2, . . . , Bn, respectively [not shown
in Fig. 2(c)]. One can drive the following equation with
importance sampling:

∑

B1,B2,...,Bn

P(A|B1, B2, . . . , Bn)P(B1|I1) · · · P(Bn|In)

≈
∑

B1,B2,...,Bn

P(A|B1, B2, . . . , Bn)

× P(B1, B2, . . . , Bn|I1, . . . , In)

≈
∑

i

P
(
A|Bi

1, Bi
2, . . . , Bi

n

)

× P
(
I1, I2, . . . , In|Bi

1, Bi
2, . . . , Bi

n

)
∑

i P
(
I1, I2, . . . , In|Bi

1, Bi
2, . . . , Bi

n

)

=
∑

i

P
(
A|Bi

1, Bi
2, . . . , Bi

n

)

× P
(
I1|Bi

1

)
P
(
I2|Bi

2

) · · · P
(
In|Bi

n

)
∑

i P
(
I1|Bi

1

)
P
(
I2|Bi

2

) · · · P
(
In|Bi

n

)

Bi
1, Bi

2, . . . , Bi
n ∼ P(B1, B2, . . . , Bn). (2)

Note that (2) is a function of variable A, and it can be further
utilized when A is a child node of other nodes. Note that an
approximation exists in (2), which is

P(B1|I1)P(B2|I2) · · · P(Bn|In)

≈ P(B1, B2, . . . , Bn|I1, I2, . . . , In). (3)

This approximation can be understood like this. According to
the total probability formula, P(B1, B2, . . . , Bn|I1, I2, . . . , In)

equals

P(B1, B2, . . . , Bn|I1, I2, . . . , In)

= P(B1|I1, I2, . . . , In)P(B2|B1, I2, . . . , In) · · ·
P(Bn|B1, B2, . . . , Bn−1, In). (4)

By comparing (3) and (4), we obtain

P(B1|I1)P(B2|I2) · · · P(Bn|In)

≈ P(B1|I1, I2, . . . , In)P(B2|B1, I2, . . . , In) · · ·
P(Bn|B1, B2, . . . , Bn−1, In). (5)

Assumptions that satisfy (5) include a set equality of the
following sort:

P(B1|I1) = P(B1|I1, I2, . . . , In)

P(B2|I2) = P(B2|B1, I2, . . . , In)

· · ·
P(Bn|In) = P(Bn|B1, B2, . . . , Bn−1, In). (6)

It implies that some conditional independence assump-
tions exist in (3) and (5), such as B1 ⊥ I2, . . . , In | I1,
B2 ⊥ B1, I3, . . . , In | I2, . . . , Bn ⊥ B1, B2, . . . , Bn−1 | In. A
special case of the network in Fig. 2(c) is that the parent node

A has only one child node [shown in Fig. 2(d)] and (2) can
be converted to

∑

B

P(A|B)P(B|I) ≈
∑

Bi

P
(
A|Bi) P

(
I|Bi

)
∑

Bi P
(
I|Bi

)

Bi ∼ P(B). (7)

Note that there are no conditional independence assumptions
in (7).

As arbitrary tree-structured Bayesian network could be
divided into basic networks in Fig. 2(c) and (d), inference
of tree-structured Bayesian network can be implemented by
the composition of (2) and (7). Here we give an exam-
ple to illustrate it. The inference problems in Fig. 2(a)
are marginal inference P(A|I1, I2, I3) and MAP estimation
arg maxA P(A|I1, I2, I3), among which marginal inference can
be performed by (8), shown at the top of the next page.

Here Ci
1, Ci

2 ∼ P(C1, C2), Cj
3 ∼ P(C3), Bk

1, Bk
2 ∼ P(B1, B2),

and Al ∼ P(A). I(Al = at) is an indicator function, which
equals to 1 only when Al = at. Note that at is the possible state
of the variable A and t = 1, 2, . . . , T . Equation (8) includes
some approximations

P(C1, C2|I1, I2, I3) ≈ P(C1, C2|I1, I2)

P(C3|C1, C2, I3) ≈ P(C3|I3)

P(B1|C1, C2, C3) ≈ P(B1|C1, C2)

P(B2|B1, C3) ≈ P(B2|C3)

P
(

B1, B2|Ci
1, Ci

2, Cj
3

)
≈ P

(
B1|Ci

1, Ci
2

)
P
(

B2|Cj
3

)
(9)

which implies that (8) includes some conditional indepen-
dence assumptions, that are C1, C2⊥I3|I1, I2, C1, C2⊥C3|I3,
B1⊥C3|C1, C2, B1⊥B2|C3, B1⊥Cj

3|Ci
1, Ci

2, and B1⊥B2|Cj
3.

In addition, MAP estimation is to choose the state that
maximizes the posterior probability, which can be imple-
mented easily after we have known the posterior distribution
P(A|I1, I2, I3).

C. Generation of Samples From Prior Distributions With
Importance Sampling

The precondition of the proposed algorithm is that the sam-
ples are generated from some special distributions, like prior
distributions, however, not all of these special distributions
are known. For example, considering the inference problem
in Fig. 2(a), we suppose that the samples are generated from
the distributions P(C1, C2), P(C3), P(B1, B2), and P(A) in (8)
while we only know the prior distribution P(A). Therefore,
one should propose an algorithm to sample from these special
distributions and it should be able to be implemented by the
STM. Interestingly, we find that importance sampling could
solve this problem

P(B1, B2) =
∑

A

P(A, B1, B2) =
∑

A

P(A)P(B1, B2|A)

= 1

L

L∑

l=1

P
(

B1, B2|Al
)
, Al ∼ P(A). (10)

Here Al follows the distribution P(A). Then the probabilities
P(C1, C2) and P(C3) could be computed based on P(B1, B2).

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

502 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

P(A = at|I1, I2, I3)

=
∑

A,B1,B2,C1,C2,C3

I(A = at)P(A, B1, B2, C1, C2, C3|I1, I2, I3)

=
∑

A,B1,B2,C1,C2,C3

I(A = at)P(C1, C2, C3|I1, I2, I3)P(B1, B2|C1, C2, C3)P(A|B1, B2)

=
∑

A,B1,B2,C1,C2,C3

I(A = at)P(C1, C2|I1, I2, I3)P(C3|C1, C2, I3)P(B1, B2|C1, C2, C3)P(A|B1, B2)

≈
∑

A,B1,B2,C1,C2,C3

I(A = at)P(C1, C2|I1, I2)P(C3|I3)P(B1, B2|C1, C2, C3)P(A|B1, B2)

≈
∑

A,B1,B2,C1,C2,C3

I(A = at)P(C1, C2|I1, I2)P(C3|I3)P(B1|C1, C2)P(B2|C3)P(A|B1, B2)

≈
∑

A,B1,B2

I(A = at)P(A|B1, B2)

(
∑

i

P
(
B1|Ci

1, Ci
2

) P
(
I1, I2|Ci

1, Ci
2

)
∑

i P
(
I1, I2|Ci

1, Ci
2

)
)⎛

⎝
∑

j

P
(

B2|Cj
3

) P
(

I3|Cj
3

)

∑
j P
(

I3|Cj
3

)

⎞

⎠

≈
∑

A,B1,B2

I(A = at)P(A|B1, B2)
∑

i

∑

j

P
(

B1, B2|Ci
1, Ci

2, Cj
3

) P
(
I1, I2|Ci

1, Ci
2

)
∑

i P
(
I1, I2|Ci

1, Ci
2

)
P
(

I3|Cj
3

)

∑
j P
(

I3|Cj
3

)

≈
∑

A,i,j

I(A = at)
∑

k

P
(

A|Bk
1, Bk

2

) P
(

Ci
1, Ci

2, Cj
3|Bk

1, Bk
2

)

∑
k P
(

Ci
1, Ci

2, Cj
3|Bk

1, Bk
2

)
P
(
I1, I2|Ci

1, Ci
2

)
∑

i P
(
I1, I2|Ci

1, Ci
2

)
P
(

I3|Cj
3

)

∑
j P
(

I3|Cj
3

)

≈
∑

l

I
(

Al = at

)∑

k

P
(
Bk

1, Bk
2|Al

)
∑

l P
(
Bk

1, Bk
2|Al

)
∑

i,j

P
(

Ci
1, Ci

2, Cj
3|Bk

1, Bk
2

)

∑
k P
(

Ci
1, Ci

2, Cj
3|Bk

1, Bk
2

)
P
(
I1, I2|Ci

1, Ci
2

)
∑

i P
(
I1, I2|Ci

1, Ci
2

)
P
(

I3|Cj
3

)

∑
j P
(

I3|Cj
3

) (8)

For example, P(C3) is calculated by

P(C3) =
∑

B2

P(B2, C3) =
∑

B2

P(B2)P(C3|B2)

= 1

K

K∑

i=1

P
(

C3|Bk
2

)
. Bk

2 ∼ P(B). (11)

IV. THEORETICAL ANALYSIS OF CONDITIONAL

INDEPENDENCE ASSUMPTIONS

To use sampling to optimize the posterior distributions
required for inference, we have made a number of simplifying
assumptions that enable the sampling to be local. It turns out
that the simplifying assumptions are equivalent to conditional
independence assumptions within the generative model (that
could be regarded as a mean field approximation). We will take
some care to illustrate the particular independence assump-
tions and the conditions under which they can be, effectively,
ignored.

Here we consider the simple networks as in Fig. 2(a), of
which the inference equation (8) is based on two sets of
conditional independence assumptions.

Set 1: B1⊥C3|C1, C2, B1⊥B2|C3, B1⊥Cj
3|Ci

1, Ci
2, and

B1⊥B2|Cj
3.

Set 2: C1, C2⊥I3|I1, I2 and C1, C2⊥C3|I3.
The following theorems resolve these conditional indepen-
dence assumptions, respectively. Specifically, we first prove
by Theorem 1 that the assumptions in set 1 do not affect

the accuracy of the inference algorithm, which means the
inference results will converge to the accurate value with prob-
ability 1 as the sample size tends to infinity. Then we prove by
Theorem 2 that the assumptions in set 2 hold approximately
if the structure of the STM includes multilayers.

Theorem 1: Considering the Bayesian network
shown in Fig. 3(a), we define that: f1(Y1, Y2) =∑

Z1,Z2
P(Y1, Y2|Z1, Z2)P(Z1|T1)P(Z2|T2), f2(Y1, Y2) =∑M

i=1
∑N

j=1 P(Y1, Y2|Zi
1, Zj

2)([P(T1|Zi
1)]/[

∑M
i=1 P(T1|Zi

1)])

([P(T2|Zj
2)]/[

∑N
j=1 P(T2|Zj

2)]), Zi
1 ∼ P(Z1), and Zj

2 ∼ P(Z2),
then for arbitrary small number ε, we have

lim
M→∞
N→∞

P(|f2(Y1, Y2) − f1(Y1, Y2)| < ε) = 1. (12)

The proofs of Theorem 1 is in Appendix A. Theorem 1
shows that f2(Y1, Y2) is an estimator of f1(Y1, Y2) and con-
verges to f1(Y1, Y2) with probability 1 when M and N tend
to infinity. With Theorem 1, we can demonstrate that the
conditional independent assumptions in set 1 will not affect
the accuracy of the proposed algorithm. Specifically, the con-
ditional independence assumptions used in (8) include the
following four steps:

g1 =
∑

A

I(A = at)
∑

B1,B2P(A|B1,B2)

∑

C1,C2,C3

× {P(C1, C2|I1, I2)P(C3|I3)P(B1, B2|C1, C2, C3)} (13)

g2 =
∑

A

I(A = at)
∑

B1,B2

P(A|B1, B2)
∑

C1,C2,C3

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

YU et al.: STM: EFFICIENT IMPLEMENTATION OF DISTRIBUTED BAYESIAN INFERENCE IN NEURAL NETWORKS 503

(a) (b)

Fig. 3. Basic Bayesian models for illustrating conditional independence
assumptions. (a) Simple Bayesian network for illustrating Theorem 1 and the
conditional independence assumptions in set 1. (b) Multihierarchy Bayesian
network for illustrating Theorem 2 and the conditional independence assump-
tions in set 2.

× {P(C1, C2|I1, I2)P(C3|I3)P(B1|C1, C2)P(B2|C3)} (14)

g3 =
∑

A

I(A = at)
∑

B1,B2

×

⎧
⎪⎨

⎪⎩
P(A|B1, B2)

⎛

⎜⎝
∑

i

P
(
B1|Ci

1, Ci
2

) P
(
I1, I2|Ci

1, Ci
2

)
∑

i P
(
I1, I2|Ci

1, Ci
2

)

⎞

⎟⎠

×
⎛

⎝
∑

j

P
(

B2|Cj
3

) P
(

I3|Cj
3

)

∑
j P
(

I3|Cj
3

)

⎞

⎠

⎫
⎬

⎭

× Ci
1, Ci

2 ∼ P(C1, C2)C
j
3 ∼ P(C3) (15)

g4 =
∑

A

I(A = at)
∑

B1,B2

P(A|B1, B2)
∑

i

∑

j

×
⎧
⎨

⎩P
(

B1, B2|Ci
1, Ci

2, Cj
3

) P
(
I1, I2|Ci

1, Ci
2

)
∑

i P
(
I1, I2|Ci

1, Ci
2

)
P
(

I3|Cj
3

)

∑
j P
(

I3|Cj
3

)

⎫
⎬

⎭

× Ci
1, Ci

2 ∼ P(C1, C2)C
j
3 ∼ P(C3). (16)

The transformation from (13) to (14) includes the
conditional independence assumptions B1⊥C3|C1, C2 and
B1⊥B2|C3. The transformation from (14) to (15) is
based on importance sampling. Equation (16) includes the
assumptions B1⊥Cj

3|Ci
1, Ci

2, and B1⊥B2|Cj
3. With Theorem

1, one can prove that for arbitrary small number ε,
lim M→∞

N→∞
P(|g4 − g1| < ε) = 1 with M and N representing the

sample sizes of Ci
1, Ci

2, and Cj
3, respectively.

The above results illustrate that the conditional indepen-
dence assumptions in set 1 do not affect the accuracy of our
algorithm. Thus we are able to regard (16) as a generalized
importance sampling of (13). We show in the next section

that this sampling-based inference process can be easily imple-
mented by a network of neurons. However, the mathematical
principles behind it are complex. The result is universal in our
algorithm for different models as long as it includes structure
as that in Fig. 3(a).

Theorem 2: Considering the Bayesian network shown in
Fig. 3(b), the prior distribution P(X) and conditional dis-
tribution P(Zt|Yt,n) are created by generated some numbers
randomly from a uniform distribution on [0, 1] and then nor-
malizing them (t = 1, 2). Similarly, the conditional distribution
P(Yt,1|X) and P(Yt,i + 1|Yt,i) are generated randomly and the
probability of each state is nonzero (i = 1, 2, . . . , n − 1 and
t = 1, 2), then we conclude that Z1⊥Z2 when n tends to
infinity.

The proof of Theorem 2 is in Appendix B. Theorem 2
shows that the dependence between Z1 and Z2 decrease as
the hierarchy increases and will converge to zero if the
hierarchy tends to infinity. We use this theorem to explain
that the conditional independence assumptions in set 2 are
reasonable. With Theorem 2, we can prove that the vari-
ables C1–C3 are approximately independent, which means
P(C1, C2, C3) = P(C1, C2)P(C3). Then, we can get

P(C1, C2|I1, I2, I3)

=
∑

C3
P(C1, C2, C3, I1, I2, I3)∑

C1,C2,C3
P(C1, C2, C3, I1, I2, I3)

=
∑

C3
P(C1, C2)P(C3)P(I1, I2|C1, C2)P(I3|C3)∑

C1,C2
P(C1, C2)P(I1, I2|C1, C2)

∑
C3

P(C3)P(I3|C3)

= P(I1, I2, C1, C2)P(I3)

P(I1, I2)P(I3)

= P(C1, C2|I1, I2) (17)

and

P(C3|C1, C2, I3) = P(C1, C2, C3, I3)∑
C3

P(C1, C2, C3, I3)

= P(C1, C2)P(C3)P(I3|C3)∑
C3

P(C1, C2)P(C3)P(I3|C3)
= P(C3|I3)

(18)

which means C1, C2⊥I3|I1, I2, C1, and C2⊥C3|I3. From the
perspective of Bayesian networks, C1–C3 are not independent.
However, this independence can happen in neuronal system as
neuronal networks are hierarchical.

In conclusion, the hierarchical structure of the brain can
ensure that some conditional independence assumptions are
satisfied approximately, thus ensuring the accuracy of the
inference algorithm. Now we have proved that our proposed
STM can approximate Bayesian inference theoretically. The
simulation experiments in the later section confirm this point.

V. NEURAL NETWORK IMPLEMENTATION

In this section, we introduce the detailed neural network
architecture of STM that can implement sampling-based infer-
ence algorithm. Shi and Griffiths [38] used radial basis
function (RBF) networks to implement importance sampling
and illustrated that the basic operations of the RBF model have
neural correlates. However, they did not show how to calculate

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

Fig. 4. Neural network architecture of the STM for the basic network as
in Fig. 2(c). Computations done by this network are based on PPC (pur-
ple) and three types of biologically plausible operations: normalization (red),
multiplication (blue), and linear combination (light blue).

prior probabilities. In this paper, we will calculate prior prob-
abilities and implement inference in the similar network based
on PPC and several biologically plausible operations. We first
show how to implement inference in basic network motif with
simple STM. Then we use serial and parallel combination of
these basic networks to build a large-scale STM to calculate
prior probabilities from top to down and perform inference for
arbitrary tree-structured Bayesian model from bottom to up.

Before we give detailed circuits of STM, we give a brief
introduction of PPC. PPC takes advantages of the variability in
neuronal responses and considers that a population of neurons
can encode the probability distributions, instead of the values
of variables. Specifically, for N independent Poisson spiking
neurons, the distribution of the responses r = {r1, r2, . . . , rN}
to the input stimulus S is P(r|S) = ∏

i [(e−fi(s)fi(s)ri)/(ri!)],
where fi(s) represents the tuning curve of the neuron i and
is a function of the input stimulus S, which represents the
average firing rate of stimulus S over an infinite number of
trials. With this definition, the distribution of the input stimulus
S is encoded by the neural activities r = {r1, r2, . . . , rN}.

Fig. 4 shows the neural network layout of the STM to imple-
ment inference for our basic network motif as in Fig. 2(c),
which includes PPC and three types of plausible neural
operations: 1) normalization; 2) multiplication; and 3) linear
combination that can be realized by computation in neural cir-
cuits [50]. To be specific, there are m Poisson spiking neurons,
each of which has a specific attribute, like tuning curve, and
can represent a specific state of variables B1, B2, . . . , Bn. The
distributions of these Poisson spiking neurons follows the prior
distribution P(B1, B2, . . . , Bn), and the tuning curve of the
neuron i is supposed to be proportional to the conditional dis-
tribution P(I1, I2, . . . , In|Bi

1, Bi
2, . . . , Bi

n), where I1, I2, . . . , In

are input stimuli. Note that the prior and conditional distri-
butions are known. The output of Poisson spiking neurons
are normalized by shunting inhibition and/or synaptic depres-
sion [38], [51], [52] (refer to [53, Fig. 1] for detailed neural

Fig. 5. Top-down process of calculating prior probabilities. This neural
network architecture of the STM is used to calculate prior probabilities of the
Bayesian model in Fig. 2(a).

circuit). If we use yi to express the individual output firing rate
of Poisson spiking neuron i and Y to express the total firing
rate, i.e., Y = ∑

i yi, then

E(yi/Y = n) = P
(
I1, I2, . . . , I2|Bi

1, Bi
2, . . . , Bi

n

)
∑

i P
(
I1, I2, . . . , I2|Bi

1, Bi
2, . . . , Bi

n

) (19)

which is proved in [38]. This result shows the expecta-
tion of the individual firing rate relative to total firing rate
equals to normalized conditional probability. The normal-
ized results are linearly combined with their synaptic weights
wi = P(A|Bi

1, Bi
2, . . . , Bi

n) to get a summation output as

E

(
∑

i

wiyi/Y = n

)
=
∑

i

wiE(yi/Y = n)

=
∑

i

P
(
A|Bi

1, Bi
2, . . . , Bi

n

)

P
(
I1, I2, . . . , I2|Bi

1, Bi
2, . . . , Bi

n

)
∑

i P
(
I1, I2, . . . , I2|Bi

1, Bi
2, . . . , Bi

n

)

(20)

which equals to the inference result in (2).
Next, we illustrate a large neural network with a few more

components of the STM for the Bayesian model in Fig. 2(a).
The two processes are shown in Fig. 5 for the top-down
process of calculating prior probabilities and Fig. 6 for the
bottom-up process of performing inference. The whole neural
network is the serial and parallel combinations of the basic
network motifs.

We first discuss the top-down process as shown in Fig. 5.
There are feature detection neurons A1, A2, . . . , AL with their
states proportional to the prior distribution P(A). Supposing
that the synaptic weight to the next layer is P(B1, B2|Al)/L,
the probability P(B1, B2) could be calculated by P(B1, B2) =
(1/L)

∑L
l=1 P(B1, B2|Al). The states of feature detection neu-

rons in the next layer are then decided by the probability
P(B1, B2). The probabilities P(C1, C2) and P(C3) could be
calculated in a similar way. This top-down process calculate
all the prior probabilities P(B1, B2), P(C1, C2), and P(C3) and
ensure that the frequencies of these feature detection neurons
are proportional to the prior probabilities.

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

YU et al.: STM: EFFICIENT IMPLEMENTATION OF DISTRIBUTED BAYESIAN INFERENCE IN NEURAL NETWORKS 505

Fig. 6. Bottom-up process of performing inference. This neural network
architecture of the STM is used to implement inference of the Bayesian model
in Fig. 2(a).

On the contrary, the inference process is bottom-up as
shown in Fig. 6. There are I Poisson spiking neurons that
encode the variables C1 and C2 and J Poisson spiking neurons
that encode the variable C3. The distribution of these Poisson
spiking neurons follows the prior distributions P(C1, C2)

and P(C3). Besides, the tuning curves are proportional to
P(I1, I2|Ci

1, Ci
2) and P(I3|Cj

3) respectively. The responses of
Poisson spiking neurons in the bottom layer are normalized
by shunting inhibition and/or synaptic depression [38], [51],
[52]. Using the conclusion in [38], we can get that the expec-
tation of mean firing rates of the Poisson spiking neurons
Ci

1, Ci
2, and Cj

3 are P(I1, I2|Ci
1, Ci

2)/
∑

i P(I1, I2|Ci
1, Ci

2) and
P(I3|Cj

3)/
∑

j P(I3|Cj
3), respectively. These firing rates are

multiplied together and fed into the next layer with the synap-
tic weight P(Ci

1, Ci
2, Cj

3|Bk
1, Bk

2)/
∑

k P(Ci
1, Ci

2, Cj
3|Bk

1, Bk
2)

and the outputs of the neurons are
∑

i,j [(P(Ci
1, Ci

2,

Cj
3|Bk

1, Bk
2))/(

∑
k P(Ci

1, Ci
2, Cj

3|Bk
1, Bk

2))], [(P(I1, I2|Ci
1, Ci

2))/

(
∑

i P(I1, I2|Ci
1, Ci

2))], and [(P(I3|Cj
3))/(

∑
j P(I3|Cj

3))], where
Bk

1 and Bk
2 are feature detection neurons with their states

proportional to the prior probability P(B1, B2). The process is
similar in other layers and we can get the posterior probability
P(A|I1, I2, I3) in the fourth layer, which equals to the result
in (8). Based on this, MAP estimation arg maxA P(A|I1, I2, I3)

is easy to be calculated since we only need to add a
winner-take-all (WTA) circuit2 after the fourth layer.

The STM has the feature that most of computations are done
by simple neural network motifs. Therefore, it uses massive
number of neurons to sample in parallel and calculates only
once without iterations, for instance, the STM can use a thou-
sand neurons to sample one time instead of a neuron sampling
a thousand times. As a result, the inference is quite fast and
efficient. The apparent cost is that the STM needs a large num-
ber of neurons. Luckily, there are about 80 billion neurons in
human brain, which seems to be reasonable enough for par-
allel computing, similar to the computational principle of our
proposed STM.

VI. SIMULATIONS

We test the accuracy of the STM for Bayesian inference
on two cognitive problems: 1) the integration of multicue
information and 2) object detection with compositional model.
The first one is a benchmark problem used to test the accuracy
of Bayesian inference method. The second one is a larger and
more complex problem, and it is used to examine whether our
method can scale up to large-scale Bayesian model.

A. Integration of Multicue Information

In our daily life, we often receive sensory information from
vision, hearing and tough simultaneously. Experimental evi-
dence shows that the human brain is able to integrate them in
a Bayesian style [55]. At the neuronal level, Ma et al. [32]
explained that linear combinations of different neuronal pop-
ulation activities with PPC correspond to the process of cue
integration. Here we show that our proposed STM can solve
multicue integration with a high accuracy.

The haptic-visual-auditory integration problem is consid-
ered in this paper, which could be modeled by the Bayesian
network shown in Fig. 7(a). Here S, SH , SV , and SA denote
the location of the stimulus, haptic, visual, and auditory cues,
respectively. Supposing that P(S) is a uniform distribution,
P(SH|S), P(SV |S) and P(SA|S) are three different Gaussian dis-
tributions with the same mean value S and different variances
σ 2

SH
, σ 2

SV
, and σ 2

SA
, then we can infer the posterior probability

of S given SH , SV , and SA with importance sampling

P(S = s|SH, SV , SA) =
∑

S

I(S = s)P(S|SH, SV , SA)

=
∑

i

I(Si = s)
P(SH, SV , SA|Si)∑
i P(SH, SV , SA|Si)

Si ∼ P(S).

(21)

In our simulation, there are 5000 Poisson spiking neurons,
the states of which follow the distribution P(S). The tuning
curve of the neuron i is supposed to be proportional to the
distribution P(SH, SV , SA|Si). The output of Poisson spiking
neurons are normalized by shunting inhibition and/or synap-
tic depression. The normalized results are fed into the output

2WTA circuit is an ubiquitous motif of cortical microcircuits in the brain,
which consists of ensemble of excitatory cells with lateral inhibition [54].
With the competition between excitatory cells induced by the inhibition, only
the excitatory neuron with the largest membrane can fire.

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

506 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

(a)

(b)

Fig. 7. Simulation of multicue integration. (a) Left: a Bayesian model for
haptic (green line), visual (purple line), and auditory (black line) integration,
and right: comparison of the inference results with STM (blue dots) and
theoretical value (red line). σ 2

SH
= 64, σ 2

SV
= 16, and σ 2

SA
= 36. Each

point is averaged over ten trials. (b) Similar to (a) but for visual-auditory
integration. σ 2

SH
= σ 2

SV
= 16.

neuron with the synaptic weights I(Si = s). Fig. 7(a) illustrates
the experimental results, where the inference results obtained
by STM match the theoretical values very well. Similar to
the previous study [38], the case of two-cue integration is
illustrated in Fig. 7(b) for the completeness.

B. Object Detection With Compositional Model

Now we test our sampling-based inference algorithm for
large-scale Bayesian model with a compositional model for
object detection. Compositional model is a generative model
which represents objects similar to human brain [56]–[58]. It
assumes that an object can be decomposed into small parts
and these parts can be decomposed into smaller and smaller
parts until we get the smallest parts, such as the horizontal
and vertical lines. The process of object detection is on the
contrary, which starts from detecting the smallest parts of the
picture and then composes these parts to detect the bigger one
until the whole object is detected. A typical example of the
compositional model is shown in Fig. 8(a); a horse can be
divided into two small parts and each part can be divided into
smaller parts, until we get the basic lines. If we want to use
the model to detect the location of a horse in a picture, we
first detect all the basic lines, then compose these lines to infer
the location of a bigger part and for the same to the horse at
last.

The compositional model can be modeled by Bayesian
networks. Specifically, every node in the Bayesian network
represents a special part of the object. A parent node v rep-
resents a part of the object. It has r children nodes Ch(v) =
(v1, v2, . . . , vr), which represent r compositional parts of the
bigger part. Besides, each node has random variables attached
to it, which is specified by x, reflecting the location of the
part. Similarly, the variables attached to the children nodes
are xCh(v) = (xv1 , xv1 , . . . , xvr); here xv1 , xv1 , . . . , xvr are the

(a)

(b)

Fig. 8. Object detection with a large scale Bayesian model. (a) Left: example
of horse can be decomposed into smaller parts layer by layer with a composi-
tional model. Right: represented Bayesian model. (b) Simulation of three-layer
(left) and four-layer (right) compositional models. Max relative error, mean
relative error, and error rate decay to zero when sample size is large enough.

location of the r compositional parts. Supposing that the total
hierarchy of the model is H and the total nodes are V , it is
easy to see that V = V1 ∪V2 ∪· · ·∪VH , where V1, V2, . . . , VH

are nodes attached to each level. The prior probability of node
in H is defined by P(xH). Here we suppose that there is only
one node in the highest level H, which represents the object,
and the distribution of variable xH is uniform. The condi-
tional probability distribution of the children nodes under the
condition of the parent node is P(xCh(v)|xv).

With the definitions above, the probability distribution of
the model can be computed by

P(x) =
⎛

⎝
∏

v∈V/V1

P
(
xCh(v)|xv

)
⎞

⎠P(xH). (22)

Suppose that the nodes in the lowest level of the model
are connected to the image directly, and then the conditional
probability distribution of the image given the state of these
nodes is

P(I|x) =
∏

v∈V1

P(I(xv)|xv) (23)

where I is the input image and P(I(xv)|xv) is probability of
the image conditioned on the nodes in the lowest level. As the
problem is to detect the location of an object, the inference
problem is xH = arg maxxH P(xH|I), that is, inferring the state
of the root node given the input variables.

The represented Bayesian model for the horse is in Fig. 8(a).
The root node represents the location of the horse and the leaf
nodes represent the locations of the basic lines in the picture.
Here we calculate posterior probability P(xH|I) with STM
and express the result as PSTM(xH = i|I) (i = 1, 2, . . . , N),
where N represents the number of all possible states of
variable xH . Meanwhile, the truth of P(xH|I) is expressed
as Ptruth(xH = i|I) (i = 1, 2, . . . , N), which is calculated

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

YU et al.: STM: EFFICIENT IMPLEMENTATION OF DISTRIBUTED BAYESIAN INFERENCE IN NEURAL NETWORKS 507

with the elimination method. The relative error is defined as
[(|PSTM(xH = i|I) − Ptruth(xH = i|I)|)/(Ptruth(xH = i|I))] (i =
1, 2, . . . , N). Fig. 8(b) shows the simulation results for three-
and four-layer compositional models, where max relative error
is the maximum value of the relative error for all state (i =
1, 2, . . . , N) of the root node, mean relative error expresses
the mean value of the relative error for all states of the root
node. The error rate is the accuracy rate when we calculate
the maximum a posterior with our method compared to the
true value. These three indexes show inference accuracy of
our method based on STM. All these errors decrease as sam-
ple size increase and will be close to zero when sample size is
large enough. Therefore, these experimental results show that
our method can get accurate inference for large-scale Bayesian
models.

VII. CONCLUSION

It is of great importance to understand how the brain per-
forms Bayesian inference with a network of neurons. In this
paper, we proposed a sampling-based inference model, termed
STM, which is a distributed neural network that can imple-
ment fast and accurate inference of the arbitrary Bayesian
model.

Our method is composed of a set of simple and basic neu-
ral network motifs, and uses a massive number of neurons to
sample in parallel and perform computation locally in space.
For example, our method can use a set of 1000 neurons to
sample one time instead of a single neuron to sample 1000
times. As a result, the inference is quite fast. The apparent
cost is that our method needs large numbers of neurons for
sampling. Considering the fact that there are billions of neu-
rons in the brain, and we do perform reasoning quite fast, our
method suggests a plausible way for neural implementation of
our cognitive behaviors.

With the great advancements of recent hardwares, including
neuromorphic chips, it is expected that our method can be
implemented with both artificial neural networks and spiking
neural networks, and that is a direction we are pursuing. The
hardware also provides the basis for large-scale distributed
Bayesian inference, which is the main feature of our algorithm.

Although most of current neuroscience experiments are con-
ducted for relatively simple cognition behaviors, some more
complex tasks have been proposed, for example, a hierarchi-
cal decision-making task [59]. In future work, we will explore
these complex tasks with a large-scale of Bayesian network
based on our model.

Another important aspect we did not consider here is learn-
ing [60]. Here all the results are based on the condition that we
have known prior probabilities and conditional probabilities.
In fact, our brain does have the ability to learn the probabilities
and update them in time [24]. Some recent works have pro-
vided reference experiences for unsupervised learning [61],
supervised learning [62] and reward-based learning [63] of
the brain, which may be used to solve the learning problem
in this paper. Besides, how to combine learning with infer-
ence is an active research direction [64], [65]. Future work is
needed to unify our method and some learning mechanisms,

like spike-timing-dependent plasticity [66], [67], into one
framework.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1: Considering the Bayesian network shown
in Fig. 3(a), we define that: f1(Y1, Y2) = ∑

Z1,Z2

P(Y1, Y2|Z1, Z2)P(Z1|T1)P(Z2|T2), f2(Y1, Y2) = ∑M
i=1
∑N

j=1

P(Y1, Y2|Zi
1, Zj

2)[(P(T1|Zi
1))/(

∑M
i=1 P(T1|Zi

1))], [(P(T2|Zj
2))/

(
∑N

j=1 P(T2|Zj
2))], Zi

1 ∼ P(Z1), and Zj
2 ∼ P(Z2), then for an

arbitrary small number ε, we have

lim
M→∞
N→∞

P (|f2(Y1, Y2) − f1(Y1, Y2)| < ε) = 1. (24)

Proof: We rewrite f2(Y1, Y2) as

f2(Y1, Y2)

=
M∑

i=1

N∑

j=1

P
(

Y1, Y2|Zi
1, Zj

2

) P
(
T1|Zi

1

)
∑M

i=1 P
(
T1|Zi

1

)
P
(

T2|Zj
2

)

∑N
j=1 P

(
T2|Zj

2

)

Zi
1 ∼ P(Z1)

Zj
2 ∼ P(Z2)

=
1

MN

∑M
i=1
∑N

j=1 P
(

Y1, Y2|Zi
1, Zj

2

)
P
(
T1|Zi

1

)
P
(

T2|Zj
2

)

1
MN

∑M
k=1

∑M
l=1 P

(
T1|Zk

1

)
P
(
T2|Zl

2

)

Zi
1 ∼ P(Z1)Z

j
2 ∼ P(Z2)

Zk
1 ∼ P(Z1)Zl

2 ∼ P(Z2).
(25)

The expectation and variance take the form

E
(

P
(

Y1, Y2|Zi
1, Zj

2

)
P
(
T1|Zi

1

)
P
(

T2|Zj
2

))

=
∑

Zi
1

∑

Zj
2

{
P
(

Y1, Y2|Zi
1, Zj

2

)
P
(
T1|Zi

1

)
P
(

T2|Zj
2

)

× P
(
Zi

1

)
P
(

Zj
2

)}

=
∑

Z1

∑

Z2

P(Y1, Y2|Z1, Z2)P(T1, Z1)P(T2, Z2)

= f1(Y1, Y2)P(T1)P(T2) (26)

E
(

P
(

T1|Zk
1

)
P
(

T2|Zl
2

))

=
∑

Zk
1

∑

Zl
2

P
(

T1|Zk
1

)
P
(

T2|Zl
2

)
P
(

Zk
1

)
P
(

Zl
2

)

= P(T1)P(T2) (27)

Var
(

P
(

Y1, Y2|Zi
1, Zj

2

)
P
(
T1|Zi

1

)
P
(

T2|Zj
2

))

= E

((
P
(

Y1, Y2|Zi
1, Zj

2

)
P
(
T1|Zi

1

)
P
(

T2|Zj
2

))2
)

− E
(

P
(

Y1, Y2|Zi
1, Zj

2

)
P
(
T1|Zi

1

)
P
(

T2|Zj
2

))2

=
∑

Z1

∑

Z2

{
P(Y1, Y2|Z1, Z2)

2P(T1|Z1)
2P(T2|Z2)

2

× P(Z1)
2P(Z2)

2
}

− f1(Y1, Y2)
2P(T1)

2P(T2)
2 (28)

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

508 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

Var
(

P
(

T1|Zk
1

)
P
(

T2|Zl
2

))

= E

((
P
(

T1|Zk
1

)
P
(

T2|Zl
2

))2
)

− E
(

P
(

T1|Zk
1

)
P
(

T2|Zl
2

))2

=
∑

Z1

∑

Z2

P(T1|Z1)
2P(T2|Z2)

2P(Z1)P(Z2) − P(T1)
2P(T2)

2.

(29)

Since f1(Y1, Y2)P(T1)P(T2)/P(T1)P(T2) = f1(Y1, Y2), it is
easy to use [68, Lemma 1] to show that for an arbitrary small
number ε, lim M→∞

N→∞
P (|f2(Y1, Y2) − f1(Y1, Y2)| < ε) = 1.

APPENDIX B

Lemma 1: Suppose that A1, A2, . . . , An is randomly gen-
erated matrices, and row(Ai) = col(Ai+1) holds for i =
1, 2, . . . , n. Each element of the matrices A1, A2, . . . , An is
in [ε, 1 − ε], where ε is a small number. Besides, the sum of
each row of the matrices A1, A2, . . . , An is 1. If one defines
that Ck = (

∏k
i=1 AT

i)T , one can conclude that all elements in
a special col of Ck will tend to the same value when k tends
to infinity.

Proof of Theorem 2: It is easy to prove Ci = AiCi−1 if
i ≥ 2 and Ci = Ai if i = 1. Besides, col(Ci) = col(A1) and
row(Ci) = row(Ai). Suppose that

Ai =

⎡

⎢⎢⎢⎢⎣

ai,1,1 ai,1,2 · · · ai,1,n(i)

ai,2,1 ai,2,2 · · · ai,2,n(i)

.

.

.

.

.

.

.

.

ai,m(i),1 ai,m(i),2 · · · ai,m(i),n(i)

⎤

⎥⎥⎥⎥⎦

Ci =

⎡

⎢⎢⎢⎢⎣

ci,1,1 ci,1,2 · · · ci,1,n(1)

ci,2,1 ci,2,2 · · · ci,2,n(1)

.

.

.

.

.

.

.

.

ci,m(i),1 ci,m(i),2 · · · ci,m(i),n(1)

⎤

⎥⎥⎥⎥⎦

where m(i) and n(i) represents the row and col of the matrix Ai.
If one uses ĉi,j to express the vector of all the elements in col j
of matrix Ci, then max(̂ci,j) represents the maximum element
in col j of matrix Ci and min(̂ci,j) represents the minimum
element in col j of matrix Ci. Now for arbitrary ci+1,s,t, where
s ∈ (1, 2, . . . , m(i + 1)), t ∈ (1, 2, . . . , n(1)), we can get

ci+1,s,t = ai+1,s,1ci,1,t + ai+1,s,2ci,2,t + · · ·
+ ai+1,s,n(i+1)ci,m(i+1),t. (30)

As
∑n(i+1)

j=1 ai+1,s,j = 1, (30) is the weighted average of
col t of matrix Ci. By using the condition that the arbitrary
element of A1, A2, . . . , An is in [ε, 1 − ε], one obtains

(1 − ε) min
(
ĉi,t
)+ ε max

(
ĉi,t
) ≤ ci+1,s,t

≤ ε min
(
ĉi,t
)+ (1 − ε) max

(
ĉi,t
)

(31)

which is equivalent to

0 ≤ max
(
ĉi+1,t

)− min
(
ĉi+1,t

)

≤ (1 − 2ε)
(
max

(
ĉi,t
)− min

(
ĉi,t
))

. (32)

Equation (32) can be rewritten as

0 ≤ max
(
ĉi+1,t

)− min
(
ĉi+1,t

)

≤ (1 − 2ε)i(max
(
ĉ1,t
)− min

(
ĉ1,t
))

. (33)

If we compute the limitation for both sides of (33) when i
tends to infinity, we obtain

lim
i→∞

(
max

(
ĉi+1,t

)− min
(
ĉi+1,t

)) = 0 (34)

which means that all elements in a special col of Ci will tend
to the same value.

Theorem 2: Considering the Bayesian network shown in
Fig. 3(b), the prior distribution P(X) and the conditional
distribution P(Zt|Yt,n) are created by generating some num-
bers randomly from a uniform distribution on [0, 1] and then
normalizing them (t = 1, 2). Similarly, the conditional dis-
tributions P(Yt,1|X) and P(Yt,i+ 1|Yt,i) are generated randomly
and the probability of each state is nonzero (i = 1, 2, . . . , n−1
and t = 1, 2), then we conclude that Z1⊥Z2 when n tends to
infinity.

Proof: Suppose that Ut,1 (t = 1 or 2) is a matrix with
its element in row i and col j expressed as ut,1,i,j, and
ut,1,i,j = P(Yt,1 = Yt,1(j)|X = X(i)), where Yt,1(j) stands for
the jth element of variable Yt,1 and X(i) stands for the ith ele-
ment of variable X. Similarly, Ut,s (t = 1 or 2 and s = 1, 2, n)
is a matrix with its element in row i and col j expressed
as ut,s,i,j, and ut,s,i,j = P(Yt,s = Yt,s(j)|Yt,s−1 = Yt,s−1(i)).
Moreover, Ut,n+1 (t = 1 or 2) is a matrix with its element
in row i and col j expressed as ut,n+1,i,j, and ut,n+1,i,j =
P(Zt,1 = Zt,1(j)|Yt,n = Yt,n(i)), then we have

P(Z1) =
∑

X

∑

Y1,1

∑

Y1,2

· · ·
∑

Y1,n

P(X)P
(
Y1,1|X

)
P
(
Y1,2|Y1,1

) · · ·

P
(
Y1,n|Y1,n−1

)
P
(
Z1|Y1,n

)

=
∑

X

P(X)
∑

Y1,1

P
(
Y1,1|X

)∑

Y1,2

P
(
Y1,2|Y1,1

) · · ·
∑

Y1,n

P
(
Y1,n|Y1,n−1

)
P
(
Z1|Y1,n

)

=
∑

X

P(X)f (X, Z1). (35)

Similarly

P(Z2) =
∑

X

∑

Y2,1

∑

Y2,2

· · ·
∑

Y2,n

P(X)P
(
Y2,1|X

)
P
(
Y2,2|Y2,1

) · · ·

P
(
Y2,n|Y2,n−1

)
P
(
Z2|Y2,n

)

=
∑

X

P(X)
∑

Y2,1

P
(
Y2,1|X

)∑

Y2,2

P
(
Y2,2|Y2,1

) · · ·
∑

Y2,n

P
(
Y2,n|Y2,n−1

)
P
(
Z2|Y2,n

)

=
∑

X

P(X)g(X, Z2) (36)

P(Z1, Z2) =
∑

X

∑

Y1,1

∑

Y1,2

· · ·
∑

Y1,n

∑

Y2,1

· · ·
∑

Y2,n

×{P(X)P
(
Y1,1|X

) · · ·
P
(
Y1,n|Y1,n−1

)
P
(
Z1|Y1,n

)
P(X)P

(
Y2,1|X

)

× P
(
Y2,2|Y2,1

) · · · ft.P
(
Y2,n|Y2,n−1

)
P
(
Z2|Y2,n

)}

=
∑

X

P(X)
∑

Y1,1

P
(
Y1,1|X

)∑

Y1,2

P
(
Y1,2|Y1,1

) · · ·
∑

Y1,n

P
(
Y1,n|Y1,n−1

)
P
(
Z1|Y1,n

)∑

Y2,1

P
(
Y2,1|X

)

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

YU et al.: STM: EFFICIENT IMPLEMENTATION OF DISTRIBUTED BAYESIAN INFERENCE IN NEURAL NETWORKS 509

×
∑

Y2,2

P
(
Y2,2|Y2,1

) · · ·
∑

Y2,n

P
(
Y2,n|Y2,n−1

)
P
(
Z2|Y2,n

)

=
∑

X

P(X)f (X, Z1)g(X, Z2) (37)

where f (X = i, Z1 = j) denotes the element in the ith row and
jth col of the matrix

∏n+1
i=1 U1,i, and g(X = i, Z2 = j) denotes

the element in the ith row and jth col of the matrix
∏n+1

i=1 U2,i.
When n goes to infinity, we can prove that all the elements
in each col of

∏n+1
i=1 U1,i (

∏n+1
i=1 U2,i) tend to the same value

by using Lemma 2. It means that f (X, Z1) and g(X, Z2) are
independent of X, respectively. In other words, f (X, Z1) ≈
f1(Z1) and g(X, Z2) ≈ g1(Z2). Above all, when n goes to
infinity, one obtains

P(Z1, Z2) =
∑

X

P(X)f (X, Z1)g(X, Z2)

=
∑

X

P(X)f1(Z1)g1(Z2)

= f1(Z1)g1(Z2)

=
(
∑

X

P(X)f1(Z1)

)(
∑

X

P(X)g1(Z2)

)

=
(
∑

X

P(X)f (X, Z1)

)(
∑

X

P(X)g(X, Z2)

)

= P(Z1)P(Z2) (38)

which means Z1⊥Z2 as n tends to infinity.

ACKNOWLEDGMENT

The authors would like to thank J. Dong, Y. Gao, and
Y. Zhou for helpful discussions.

REFERENCES

[1] A. Pouget, J. M. Beck, W. J. Ma, and P. E. Latham, “Probabilistic brains:
Knowns and unknowns,” Nat. Neurosci., vol. 16, no. 9, pp. 1170–1178,
2013.

[2] F. Meyniel, M. Sigman, and Z. F. Mainen, “Confidence as Bayesian
probability: From neural origins to behavior,” Neuron, vol. 88, no. 1,
pp. 78–92, 2015.

[3] A. Pouget, J. Drugowitsch, and A. Kepecs, “Confidence and certainty:
Distinct probabilistic quantities for different goals,” Nat. Neurosci.,
vol. 19, no. 3, pp. 366–374, 2016.

[4] M. O. Ernst and M. S. Banks, “Humans integrate visual and hap-
tic information in a statistically optimal fashion,” Nature, vol. 415,
no. 6870, pp. 429–433, 2002.

[5] K. P. Körding and D. M. Wolpert, “Bayesian integration in sensorimotor
learning,” Nature, vol. 427, no. 6971, pp. 244–247, 2004.

[6] D. Kersten, P. Mamassian, and A. Yuille, “Object perception as Bayesian
inference,” Annu. Rev. Psychol., vol. 55, pp. 271–304, Feb. 2004.

[7] Z. Shi, R. M. Church, and W. H. Meck, “Bayesian optimization of time
perception,” Trends Cogn. Sci., vol. 17, no. 11, pp. 556–564, 2013.

[8] C. Chandrasekaran, “Computational principles and models of multi-
sensory integration,” Current Opin. Neurobiol., vol. 43, pp. 25–34,
Apr. 2017.

[9] D. Alais and D. Burr, “Cue combination within a Bayesian frame-
work,” in Multisensory Processes. Cham, Switzerland: Springer, 2019,
pp. 9–31.

[10] S. Goldwater, T. L. Griffiths, and M. Johnson, “A Bayesian framework
for word segmentation: Exploring the effects of context,” Cognition,
vol. 112, no. 1, pp. 21–54, 2009.

[11] N. Chater, J. B. Tenenbaum, and A. Yuille, “Probabilistic models of
cognition: Where next?” Trends Cogn. Sci., vol. 10, no. 7, pp. 292–293,
2006.

[12] J. Austerweil, S. Gershman, J. Tenenbaum, and T. Griffiths, “Structure
and flexibility in Bayesian models of cognition,” in Oxford Handbook
of Computational and Mathematical Psychology. Oxford, U.K.: Oxford
Univ. Press, 2015.

[13] K. P. Körding and D. M. Wolpert, “Bayesian decision theory in sen-
sorimotor control,” Trends Cogn. Sci., vol. 10, no. 7, pp. 319–326,
2006.

[14] P. M. Bays and D. M. Wolpert, “Computational principles of senso-
rimotor control that minimize uncertainty and variability,” J. Physiol.,
vol. 578, no. 2, pp. 387–396, 2007.

[15] J. M. Beck et al., “Probabilistic population codes for Bayesian decision
making,” Neuron, vol. 60, no. 6, pp. 1142–1152, 2008.

[16] D. Lee and H. Seo, “Neural basis of strategic decision making,” Trends
Neurosci., vol. 39, no. 1, pp. 40–48, 2016.

[17] R. M. Haefner, P. Berkes, and J. Fiser, “Perceptual decision-making
as probabilistic inference by neural sampling,” Neuron, vol. 90, no. 3,
pp. 649–660, 2016.

[18] Z. Yu, F. Chen, and F. Deng, “Unification of MAP estimation and
marginal inference in recurrent neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 11, pp. 5761–5766, Nov. 2018.

[19] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The Spinnaker
project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[20] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, 2014.

[21] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5,
pp. 699–716, May 2014.

[22] L. P. Shi et al., “Development of a neuromorphic computing system,”
in Proc. IEEE Int. Electron Devices Meeting, 2015, pp. 72–75.

[23] J. C. Shen et al., “Darwin: A neuromorphic hardware co-processor based
on spiking neural networks,” Sci. China Inf. Sci., vol. 59, no. 2, pp. 1–5,
2016.

[24] J. Fiser, P. Berkes, G. Orbán, and M. Lengyel, “Statistically optimal per-
ception and learning: From behavior to neural representations,” Trends
Cogn. Sci., vol. 14, no. 3, pp. 119–130, 2010.

[25] W. J. Ma, J. M. Beck, and A. Pouget, “Spiking networks for Bayesian
inference and choice,” Current Opin. Neurobiol., vol. 18, no. 2,
pp. 217–222, 2008.

[26] T. J. Anastasio, P. E. Patton, and K. Belkacem-Boussaid, “Using Bayes’
rule to model multisensory enhancement in the superior colliculus,”
Neural Comput., vol. 12, no. 5, pp. 1165–1187, 2000.

[27] Z. Yu, F. Chen, and J. Dong, “Neural network implementation of infer-
ence on binary Markov random fields with probability coding,” Appl.
Math. Comput., vol. 301, pp. 193–200, May 2017.

[28] R. P. N. Rao, “Bayesian computation in recurrent neural circuits,” Neural
Comput., vol. 16, no. 1, pp. 1–38, 2004.

[29] R. P. N. Rao, “Hierarchical Bayesian inference in networks of spiking
neurons,” in Proc. Adv. Neural Inf. Process. Syst., 2004, pp. 1113–1120.

[30] J. M. Beck and A. Pouget, “Exact inferences in a neural implemen-
tation of a hidden Markov model,” Neural Comput., vol. 19, no. 5,
pp. 1344–1361, 2007.

[31] J. Y. Angela and P. Dayan, “Inference, attention, and decision in a
Bayesian neural architecture,” in Proc. Adv. Neural Inf. Process. Syst.,
2004, pp. 1577–1584.

[32] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, “Bayesian infer-
ence with probabilistic population codes,” Nat. Neurosci., vol. 9, no. 11,
pp. 1432–1438, 2006.

[33] W. J. Ma and M. Jazayeri, “Neural coding of uncertainty and probabil-
ity,” Annu. Rev. Neurosci., vol. 37, pp. 205–220, Jul. 2014.

[34] J. M. Beck, P. E. Latham, and A. Pouget, “Marginalization in neu-
ral circuits with divisive normalization,” J. Neurosci., vol. 31, no. 43,
pp. 15310–15319, 2011.

[35] W. J. Ma and M. Rahmati, “Towards a neural implementation of causal
inference in cue combination,” Multisensory Res., vol. 26, nos. 1–2,
pp. 159–176, 2013.

[36] L. Buesing, J. Bill, B. Nessler, and W. Maass, “Neural dynamics as
sampling: A model for stochastic computation in recurrent networks
of spiking neurons,” PLoS Comput. Biol., vol. 7, no. 11, 2011,
Art. no. e1002211.

[37] D. Pecevski, L. Buesing, and W. Maass, “Probabilistic inference in gen-
eral graphical models through sampling in stochastic networks of spiking
neurons,” PLoS Comput. Biol., vol. 7, no. 12, 2011, Art. no. e1002294.

[38] L. Shi and T. L. Griffiths, “Neural implementation of hierarchical
Bayesian inference by importance sampling,” in Proc. Adv. Neural Inf.
Process. Syst., 2009, pp. 1669–1677.

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

510 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

[39] S. Shipp, R. A. Adams, and K. J. Friston, “Reflections on agranular
architecture: Predictive coding in the motor cortex,” Trends Neurosci.,
vol. 36, no. 12, pp. 706–716, 2013.

[40] Z. Yu, T. Huang, and J. K. Liu, “Implementation of Bayesian inference in
distributed neural networks,” in Proc. 26th Euromicro Int. Conf. Parallel
Distrib. Netw. Process. (PDP), 2018, pp. 666–673.

[41] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. Cambridge, MA, USA: MIT Press, 2009.

[42] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Inf. Theory, vol. 51, no. 7, pp. 2282–2312, Jul. 2005.

[43] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduc-
tion to MCMC for machine learning,” Mach. Learn., vol. 50, nos. 1–2,
pp. 5–43, 2003.

[44] K. Nagata and S. Watanabe, “Exchange Monte Carlo sampling from
Bayesian posterior for singular learning machines,” IEEE Trans. Neural
Netw., vol. 19, no. 7, pp. 1253–1266, Jul. 2008.

[45] D. George and J. Hawkins, “Towards a mathematical theory of
cortical micro-circuits,” PLoS Comput. Biol., vol. 5, no. 10, 2009,
Art. no. e1000532.

[46] A. Steimer, W. Maass, and R. Douglas, “Belief propagation in networks
of spiking neurons,” Neural Comput., vol. 21, no. 9, pp. 2502–2523,
2009.

[47] S. Litvak and S. Ullman, “Cortical circuitry implementing graphical
models,” Neural Comput., vol. 21, no. 11, pp. 3010–3056, 2009.

[48] J. Cheng and M. J. Druzdzel, “AIS-BN: An adaptive importance sam-
pling algorithm for evidential reasoning in large Bayesian networks,” J.
Artif. Intell. Res., vol. 13, no. 1, pp. 155–188, 2000.

[49] Y. Bengio and J.-S. Senécal, “Adaptive importance sampling to accel-
erate training of a neural probabilistic language model,” IEEE Trans.
Neural Netw., vol. 19, no. 4, pp. 713–722, Apr. 2008.

[50] M. Kouh and T. Poggio, “A canonical neural circuit for cortical nonlinear
operations,” Neural Comput., vol. 20, no. 6, pp. 1427–1451, 2008.

[51] S. J. Mitchell and R. A. Silver, “Shunting inhibition modulates neuronal
gain during synaptic excitation,” Neuron, vol. 38, no. 3, pp. 433–445,
2003.

[52] J. S. Rothman, L. Cathala, V. Steuber, and R. A. Silver, “Synaptic
depression enables neuronal gain control,” Nature, vol. 457, no. 7232,
pp. 1015–1018, 2009.

[53] O. Braganza and H. Beck, “The circuit motif as a conceptual tool for
multilevel neuroscience,” Trends Neurosci., vol. 41, no. 3, p. 128, 2018.

[54] R. Douglas and K. Martin, “Neuronal circuits of the neocortex,” Annu.
Rev. Neurosci., vol. 27, pp. 419–451, Jul. 2004.

[55] D. R. Wozny, U. R. Beierholm, and L. Shams, “Human trimodal per-
ception follows optimal statistical inference,” J. Vis., vol. 8, no. 3, p. 24,
2008.

[56] A. Yuille and R. Mottaghi, “Complexity of representation and infer-
ence in compositional models with part sharing,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 292–319, 2016.

[57] Y. Jin and S. Geman, “Context and hierarchy in a probabilistic image
model,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 2, 2006, pp. 2145–2152.

[58] P. Luo, L. Lin, and X. Liu, “Learning compositional shape models
of multiple distance metrics by information projection,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 7, pp. 1417–1428, Jul. 2016.

[59] J. A. M. Lorteije, A. Zylberberg, B. G. Ouellette, C. I. De Zeeuw,
M. Sigman, and P. R. Roelfsema, “The formation of hierarchical deci-
sions in the visual cortex,” Neuron, vol. 87, no. 6, pp. 1344–1356,
2015.

[60] M. Zhang, H. Qu, A. Belatreche, and X. Xie, “EMPD: An efficient
membrane potential driven supervised learning algorithm for spiking
neurons,” IEEE Trans. Cogn. Develop. Syst., vol. 10, no. 2, pp. 151–162,
Jun. 2018.

[61] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual fea-
tures through spike timing dependent plasticity,” PLoS Comput. Biol.,
vol. 3, no. 2, p. e31, 2007.

[62] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural
networks with ReSuMe: Sequence learning, classification, and spike
shifting,” Neural Comput., vol. 22, no. 2, pp. 467–510, 2010.

[63] N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules,” Front. Neural
Circuits, vol. 9, p. 85, Jan. 2016.

[64] S. Guo, Z. Yu, D. Fei, X. Hu, and C. Feng, “Hierarchical Bayesian
inference and learning in spiking neural networks,” IEEE Trans. Cybern.,
vol. 49, no. 1, pp. 133–145, Jan. 2019.

[65] D. Pecevski and W. Maass, “Learning probabilistic inference through
spike-timing-dependent plasticity,” eNeuro, vol. 3, no. 2, p. 48, 2016.

[66] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learn-
ing through spike-timing-dependent synaptic plasticity,” Nat. Neurosci.,
vol. 3, no. 9, pp. 919–926, 2000.

[67] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” J. Neurosci., vol. 18, no. 24, pp. 10464–10472,
1998.

[68] Z. Yu, F. Chen, J. Dong, and Q. Dai, “Sampling-based causal inference
in cue combination and its neural implementation,” Neurocomputing,
vol. 175, no. 1, pp. 155–165, 2016.

Zhaofei Yu (M’19) received the B.S. degree
from the Hong Shen Honors School, College of
Optoelectronic Engineering, Chongqing University,
Chongqing, China, in 2012, and the Ph.D.
degree from the Automation Department, Tsinghua
University, Beijing, China, in 2017.

He is currently a Post-Doctoral Fellow with
the National Engineering Laboratory for Video
Technology, Department of Computer Science and
Technology, Peking University, Beijing. His current
research interests include brain-inspired computing

and computational neuroscience.

Feng Chen (M’06) received the B.S. and
M.S. degrees in automation from Saint-Petersburg
Polytechnic University, Saint Petersburg, Russia,
in 1994 and 1996, respectively, and the Ph.D.
degree from the Automation Department, Tsinghua
University, Beijing, China, in 2000.

He is currently a Professor with Tsinghua
University. His current research interests include
computer vision, brain-inspired computing, and
inference in graphical models.

Jian K. Liu received the Ph.D. degree in mathemat-
ics from the University of California at Los Angeles,
Los Angeles, CA, USA, in 2009.

He is currently a Lecturer with the Centre
for Systems Neuroscience, University of Leicester,
Leicester, U.K. His current research interests
include computational neuroscience and brain-like
computation.

Authorized licensed use limited to: Peking University. Downloaded on December 26,2021 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

